4 этап
«ЦЕПНЫЕ ДРОБИ»
"Хотя этот род выражений до настоящего времени разработан мало, однако мы не сомневаемся, что когда-нибудь применение его весьма широко распространится в анализе бесконечных".
Леонард Эйлер (1707-1783), швейцарский, прусский и российский математик и механик
Цепные дроби привлекали ученых разных стран:
История появления и развития понятия «цепная дробь»
Наши отечественные математики также изучали, исследовали и применяли цепные дроби в своих научных открытиях:
Отечественные ученые, чьи имена связаны с изучением цепных дробей.
Таким образом, благодаря систематическому изучению Эйлером цепных дробей, многие математики, работающие в России и за её пределами, заинтересовались этим вопросом и продолжили его изучение в своих работах. Огромное количество работ, посвящённых теории цепных дробей, говорит о широких возможностях применения её к различным областям науки. Цепные и ветвящиеся цепные дроби обладают рядом уникальных свойств, обеспечивающих им широкое использование в теоретической и прикладной математике. Этим и объясняется повышенный интерес математиков к данной теории на протяжении нескольких веков.
В настоящее время в теоретическом плане непрерывные дроби играют существенную роль, так как позволяют усилить и развить результаты классической математики на случай многих аргументов, причём сам аппарат цепных дробей зачастую подсказывает формулировки такого рода обобщений, в частности, в теории чисел.
Цепные дроби широко применяются в теории чисел: обобщены некоторые основные алгоритмы (алгоритм Евклида, Остроградского, Эйлера), найдено решение классической задачи об алгебраических иррациональностях высших степеней, найдены отдельные решения некоторых диофантовых уравнений и их систем.
Цепные дроби дают большое преимущество в точности при приближённом нахождении корней квадратных уравнений; вычислении логарифмов чисел.
Цепные дроби позволяют строить алгоритмы для вычисления корней алгебраических уравнений произвольной степени. На базе цепных дробей построены некоторые эффективные методы решения алгебраических и трансцендентных уравнений.
Цепные дроби используются для нахождения приближенных представлений функций.
Теория матричных ветвящихся цепных дробей позволяет решить следующие задачи: извлечение квадратного корня, корня третьей, четвёртой степени и корня любой рациональной степени с помощью матриц, решение уравнений с помощью матриц второго порядка, решение уравнений высших степеней с помощью матриц.
В настоящее время цепные дроби находят всё большее применение в вычислительной технике, так как позволяют строить эффективные алгоритмы для решения ряда задач на ЭВМ.
Помимо теоретического использования правильных цепных дробей существуют и практические приложения цепных дробей. Например,